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We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their
flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily
deform in bending, while they are much stiffer with respect to tensile forces �“stretching”�. Unlike in previous
approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the
soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic
moduli starting from a microscopic characterization of the deformation field in terms of “floppy modes”—
low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the
emergent nonaffinity is given by the “fiber length” lf, defined as the scale over which the polymers remain
straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of
recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to
rationalize bulk rheological data in reconstituted actin networks.
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I. INTRODUCTION

The elasticity of flexible polymer gels is successfully de-
scribed by the theory of rubber elasticity �1�. It ascribes the
resistance to deformation to a reduction of conformational
entropy induced by a changing end-to-end distance of indi-
vidual polymer strands. In the classic approach, developed
by Kuhn and others �2�, the magnitude of the deformation of
a single constituent polymer is usually assumed to derive
from the macroscopically induced strain in an affine way.
With this assumption the network problem is reduced to cal-
culating the response of a single chain. In this sense, affine
deformations represent a mean-field assumption that neglects
spatial correlations and therefore the coupling between the
network structure �“architecture”� and the mechanical prop-
erties of its constituents.

In recent years, a different class of cross-linked networks
made of semiflexible or stiff polymers have gained wide-
spread interest. Their importance for biological systems as
the cytoskeleton or extracellular matrix makes understanding
their properties highly rewarding �3�. Out of the variety of
biological stiff polymers, F-actin has emerged as a model
system, which allows precise in vitro rheological measure-
ments, for example in determining the �complex� frequency-
dependent shear modulus G��� and in particular its elastic
component, the plateau modulus G0 at intermediate frequen-
cies. In these experiments various types of cross-linking pro-
teins are being used �4–7� and the influence of the degree of
cross-linking on the elastic modulus is investigated.

Stiff polymers, unlike their flexible counterparts, are
highly anisotropic in their elastic response and may be char-
acterized in terms of two qualitatively different deformation
modes �see Fig. 1� �8,9�. The linear response to longitudinal
forces acting parallel to the contour �stretching or compres-
sion�, is due to the presence of thermally excited undulations
similar to the �isotropic� stiffness of flexible polymers. The
resulting effective spring constant of a stiff polymer of con-

tour length ls, k� � lp / ls
4, depends on the temperature-

dependent persistence length lp�T−1, which indicates the
entropic origin. On the other hand, the resistance of the poly-
mer to transverse forces �bending� is predominantly an en-
ergetic effect, leading to an increase in energy rather than to
a decrease in entropy. Subsequently, the corresponding
spring constant k�� ls

−3 is independent of temperature.
The presence of two elementary deformation modes com-

plicates, but also enriches, the theoretical analysis of stiff
polymer networks since it is not obvious which of the modes,
or combination thereof, will dominate the macroscopic elas-
tic response �10,11�. Leaving aside these difficulties, recent
approaches �9,12,13� have still adopted straightforward ex-
tensions of rubber elasticity to stiff polymer networks by
assuming affine deformations to be present down to the scale
of the individual polymer segment—the part of a polymer
filament that connects two neighboring cross-links �see
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FIG. 1. �Color online� Sketch of a stiff polymer network with
filaments that are straight on a scale lf and where the distances
between crosslinks �“polymer segments”� on a given filament are
denoted by ls. The response of the constituent stiff polymers to
external forces is anisotropic with spring constants k� and k�, char-
acterizing their resistance to stretching and bending deformations,
respectively.
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Fig. 1�. In these models no bending deformations are present,
leaving the stretching mode as the only possible source of
elasticity.

In many systems of interest, however, the large value of
the persistence length lp / ls�1 calls this affine approach into
question. This separation of length scales implies that the
bending mode is in fact soft as compared to the stretching
mode, since k� /k�� lp / ls�1. One would therefore expect
the elastic energy to be dominated by low-energy bending
deformations instead of highly expensive stretching modes
�14�. Interestingly, recent simulations on random fibrous net-
works have shown that this is not always the case
�10,11,15–17�. There, it was found that in networks with
infinitely long filaments �for fixed density� the soft bending
mode is suppressed and the elastic modulus is entirely given
in terms of the stiffer stretching mode, similar to springs
connected in parallel. In contrast, the same simulations per-
formed in the more realistic situation of finite filament length
have indeed identified an elastic regime that is dominated by
soft bending deformations. The filament length thus strongly
influences the elastic properties and is crucial for understand-
ing the observed behavior. The affine theory, by working on
the smaller scale of the polymer segments, is incapable of
accounting for these effects.

In the present article, we expand on our recent publication
�18� to develop an elastic theory that works on the scale of
the whole polymer filament. The theory naturally explains
the presence of a bending dominated regime as well as its
suppression with increasing filament length. It is expected to
be applicable to a broad class of filamentous networks with a
soft bending mode. Similar to the classic theory of rubber
elasticity it assumes that the cross-links adjust to the macro-
scopically applied strain without showing thermal fluctua-
tions. In contrast to rubber elasticity, however, the cross-link
movements are chosen such that the polymer end-to-end dis-
tances are kept unchanged. This automatically avoids ener-
getically highly expensive stretching deformations and re-
sults in elastic moduli that derive from the soft bending
mode only.

In the following, we assume that stiff polymers, charac-
terized by k� /k��1, effectively behave as if they were
strictly inextensible bars, i.e. having infinite stretching stiff-
ness k�→�. Subsequently, we construct sets of “admissible”
cross-link displacements that respect this inextensibility and
thus retain a highly non-affine character. These displacement
modes are referred to as “floppy modes” �19�, highlighting
the fact that in an equivalent network of central force springs
they would carry no energy. Here, the finite bending stiffness
of the polymers associates an elastic energy to each mode,
which we use to calculate the macroscopic elastic constants
of the network.

Section II will be concerned with the analysis of networks
in the limit of diverging stretching stiffness k�→�, which
allows us to treat stiff polymers as inextensible bars. We will
introduce the concept of the floppy modes and give an ex-
plicit construction valid for a broad class of network
architectures.

In Sec. III we discuss the energy involved with exciting
floppy modes in networks of stiff polymers, characterized by
a finite, but soft, bending stiffness. Specifically, we will de-

velop a theory that allows to calculate the network elastic
constants in a self-consistent manner.

Section IV is devoted to the specific architecture of ran-
dom fibrous networks in a planar geometry �two dimen-
sonal�, where we check our ideas against simulations.

II. FLOPPY MODES

Here, we are concerned with some general properties of
networks of inextensible bars, so-called frameworks. While
the bars are assumed perfectly rigid, they are allowed to
freely rotate at the cross-links �“vertices”�. In effect, both the
stretching and the bending mode are eliminated, which
leaves us with a purely geometric problem. By applying
methods of rigidity theory �19� we will find that polymer
networks when viewed as frameworks are not rigid and pos-
sess zero-energy deformation modes �“floppy modes”�, for
which we will give an explicit geometric construction. These
modes, which may be viewed as the analog of the zero-
energy shear modes of regular square lattices, characterize
the deformation field of the network under external strain.
By accounting for the finite bending stiffness of the poly-
mers, they are used to calculate the elastic energy stored in
polymer networks and thus the elastic moduli.

A. Maxwell counting

It has first been realized by Maxwell �20� that a frame-
work, consisting of v vertices and b bars, can undergo a
transition from a floppy to a rigid state by increasing the
coordination number z. Assuming that each bar represents an
independent constraint for the total of dv degrees of freedom
in d spatial dimensions, Maxwell derived the condition b
−dv=0 determining the rigidity transition. As the number of
vertices can be rewritten in terms of the coordination number
as v=2b /z, this immediately yields a critical coordination of
zc=2d. According to this simple Maxwell counting rule,
frameworks are rigid, whenever their vertices have more
than zc neighbors, while they will be floppy and allow for
internal rearrangements otherwise.

With regard to stiff polymer networks this transition may
be used to set up a classification where the elastic energy is
dominated by either bending or stretching modes. While for
z�zc bending modes can stabilize the otherwise floppy
�zero-energy� central-force network, they only provide minor
contributions to the energy once z�zc. The honeycomb lat-
tice in 2D, for example, has a coordination of z=3 and is
therefore bending dominated, while the triangular lattice
with z=6 is clearly rigid and therefore stretching dominated.
Imposing a deformation necessarily leads to the stretching of
bonds. A particular case is the square lattice in two dimen-
sions, which has precisely the critical coordination z=zc=4.
Although being floppy with respect to shear deformations,
the network may be stabilized by introducing suitable bound-
ary constraints or by adding additional bars along the diago-
nals of some of the squares. It turns out that in the limit of
infinite system size a vanishing fraction of diagonal bars is
needed to stabilize the network �21�.

Maxwell-counting is only approximate, since one can al-
ways add redundant bars that do not constrain any degrees of
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freedom. This effect is taken into account by the modified
Maxwell relation b−dv=s−m �22�. In this picture redundant
bars create overconstrained regions where a total of s states
of self-equilibrated internal stresses may exist. In general, a
state of self-stress is defined as a set of bar tensions that is in
static equilibrium with zero external force applied. At the
same time underconstrained regions arise that allow for m
zero energy deformation modes, i.e., internal rearrangements
that can be accommodated without changing the lengths of
any of the bars to first order in the magnitude of the imposed
strain. These are usually referred to as mechanisms or floppy
modes.

In principle, the floppy modes of a pin-jointed structure
may be found by studying the kinematic matrix C which
relates vertex displacements d to segment extensions e=Cd
�23�. The kinematic matrix thus constitutes a linear relation
between displacements and extensions, which is only true for
infinitesimally small displacements. The entries to the matrix
can then easily be identified by considering the extension of
a single bar oriented �in two dimensions� at an angle � to the
horizontal. For given displacements di= �ui ,vi� at the two
vertices i=1,2 the extension is found as

e = �u2 − u1�cos � + �v2 − v1�sin � . �1�

The floppy modes then correspond to those vertex displace-
ments that do not lead to any extensions in the bars. This
amounts to calculating the null-space of the matrix, i.e.,
Cd0=0.

An elementary but illustrative example of a bar/joint net-
work �adopted from Ref. �24�� is the “chair” shown in Fig.
2�a�. Having b=4 bars and v=2 vertices, Maxwell’s count-
ing rule would imply that the structure is marginally rigid.
Actually, there is also one floppy mode m=1 as well as one
state of self-stress s=1. The former corresponds to the �in-
finitesimal� movement of the horizontal bar forming the seat,
while the latter corresponds to a tension in the two vertical
bars making the back.

For regular systems it is sometimes possible to guess the
modes. Consider, for the purpose of illustration, a honey-
comb lattice in two dimensions, where a coordination of z
=3 implies b−2v=−v /2. There is, accordingly, half a floppy
mode per vertex. These modes are most easily identified with
shear deformations along lines of symmetry �Fig. 2�b��.
Probing the shear response of the honeycomb along a given
direction will cause each of the N layers of cells to be dis-
placed by a small amount �, which eventually has to add up
to the externally imposed deformation �=N�. Thus, there is
“sharing” of the deformations between the individual cells
and each layer contributes a small amount to fulfilling the
constraints imposed by the macroscopical strain field. In
other words, the deformation field in the honeycomb lattice
is affine down to the scale of the individual cell, which ex-
periences deformations �=� /N	 lcell proportional to its own
size.

Another possibility to construct the floppy modes of the
honeycomb network is given by the librations of individual
hexagons �25� �see Fig. 2�c��. These librations are, in con-
trast to the shear displacements, localized modes that are
confined to a single cell and its immediate surroundings.

Since there is one libration per cell and each of the six cor-
responding vertices belongs to three cells, this also makes
one mode for every two vertices.

B. Floppy modes of stiff polymer networks

Proteins used to cross-link stiff polymers into networks
often have only two heads �26� such that there can only be
two-, three- and four-fold connected vertices. The average
coordination number in stiff polymer networks is therefore
z�4, which would place it below the rigidity transition and
render the network bending dominated.

In contrast to the very regular structures discussed above,
stiff polymer networks are usually highly random. Neverthe-
less, as we will see below, the floppy modes can be con-
structed quite easily on scales lf over which the undeformed
polymers can be assumed to be represented by straight fibers.
For isolated polymers the length-scale lf can be identified
with the persistence length lp, while in networks the origin
may be different and for example a consequence of the net-
work generating process itself. It is the presence of the
length-scale lf which renders the structure of stiff polymer
networks qualitatively different from flexible polymer gels.
The resulting fibrous appearance may be inspected in the
figures of Refs. �27–29�. We have recently argued that the
“fiber length” lf plays the role of the size of an effective unit
cell �11�, which in flexible polymer gels is set by the mesh-
size. In the following we use the word “fiber” in connection
with the length lf over which the polymer remains straight.
In later sections we will introduce a simple model system
where fiber and polymer length are equal.

S

FM

c)

b)a)

FIG. 2. �Color online� Illustration of the floppy modes. The
“chair” in �a� has one floppy mode �FM� corresponding to the axial
movement of the horizontal bar, as well as one state of self-stress
�S� located in the two vertical bars. The floppy modes of the hon-
eycomb lattice may be constructed, �b� from the global shear defor-
mations along any of the three dashed lines �as well as their paral-
lels�, or �c� from localized librations.
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Consider �see Figs. 3�a�–3�c�� a single �primary� fiber 

of length lf, which may be part of a longer polymer. It is
imbedded into a network of other fibers, which we call sec-
ondary fibers, if they intersect the primary fiber at one of its
cross-links i=1, . . . ,ncl. The floppy-mode construction pro-
ceeds in two stages during which only the cross-links on the
primary fiber are being moved. The rest of the network, in
particular the neighboring filaments, will remain static such
that the floppy mode stays highly localized similar to the
librations of the hexagons discussed above. In the first step,
we perform an arbitrary axial displacement �z
 of the pri-
mary fiber 
 as a whole. The axial movement of the cross-
links pertaining to this fiber induces a change in length of all
neighboring segments on the crossing secondary fibers.

In the second step, therefore, one has to account for the
length constraints on these segments by introducing cross-

link deflections ȳ
,i transverse to the primary fiber. It turns
out that to first order in �z
 all segment lengths can be kept
at their repose length by choosing

ȳ
,i = − �z
 cot �
,iê
,i + ȳ
,i
� , �2�

where �
,i is the angle between the two crossing fibers 
 and

i at cross-link i. We denote by ê
,i a unit vector transverse
to the primary fiber lying in the plane spanned by the two
fibers, and by ȳ
,i

� an arbitrary vector perpendicular to this
plane.

We would like to emphasize that the construction only
works for infinitesimal �z
, while finite displacements nec-
essarily lead to changes in bond lengths and therefore to
stretching of bonds. As will be explained in more detail in
Sec. IV A this has dramatic consequences on the nonlinear
elasticity of the network, leading to strong strain stiffening
behavior.

The construction can be performed for any of the 

=1, . . . ,Nf fibers, such that precisely Nf floppy modes are
identified in this way �42�. For the mode localized around
fiber 
 one may define a set of vectors Y
= �ȳ
,1 , ȳ
,2 , . . . �,
where the deflections of all cross-links in the network are
combined. With respect to the standard vector scalar product
one can then show that the set of floppy modes �Y
� is lin-
early independent, however, not orthogonal. Since a given
cross-link i always belongs to two filaments at the same time,
there is obviously a coupling between the two corresponding
modes. By superposition of the different Y
 one may con-
struct properly orthonormalized modes that, however, will
not be localized anymore, but rather be extended over the
whole system similar to the shear-modes of the honeycomb
lattice.

For the particular architecture of a random fiber network
in two dimensions �2D�, to be introduced below �see Sec.
IV�, we have obtained these orthornormal modes by per-
forming a singular value decomposition of the compatibility
matrix C. One of the modes is visualized in Fig. 4, where the
black lines indicate the floppy-mode displacements of the
cross-links. One remarkable property is the heterogeneous
distribution of amplitudes x, which leads to polynomial tails
in the probability distribution, P�x��x−3 �see Fig. 5�. The
exponent is a direct consequence of the random orientation
of the filaments which induces a probability distribution of
angles � between two intersecting filaments, P����sin �
�43�. By a transformation of variables to the floppy mode
deflection ȳ�cot � �and thus to x� one finds a distribution
P�ȳ��sin3��ȳ�→ ȳ−3, where the latter limit corresponds to
large ȳ�1.

III. BENDING ENERGY ASSOCIATED
WITH FLOPPY MODES

To calculate the macroscopic elastic constants of the poly-
mer network we have to associate an elastic energy to the
floppy mode excitations. This is achieved by taking into ac-
count the finite bending stiffness of the polymers. Quite gen-
erally, the bending energy �for weakly undulating contours�
can be written as

z

y

αiθ

i−1

i−1

α i+1α i

α

y

α

αi

αi

α i

αiθ

δz

δzα

y

δz

i

a)

i+1

α

c)

b)

FIG. 3. �Color online� Construction of a floppy mode starting
from the initial geometry as drawn in �a�. In �b�, the horizontal fiber
is moved, while the surrounding fibers remain in their original po-
sitions. This leads to the new cross-link positions �green circles�
with transverse deflection ȳ
,i=−cot �
,i�z
 �Eq. �2��. The compo-
nent ȳ
,i

� �not drawn� is oriented perpendicular to the plane of the
two fibers. In �c�, the secondary fiber is also moved, such that the
cross-link is now deflected according to y
,i= ȳ
,i+�z
i

/ sin �
,i �Eq.
�5��. The solid green line represents the actual contour of the de-
formed fiber obtained by minimizing the bending energy along the
entire fiber �see Eq. �4��.
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Wb�y
� =
�

2
	

0

lf 
d2y


ds2 �2

ds , �3�

where y
�s� denotes the transverse deflection at point s along
the backbone of polymer 
. The bending rigidity � is related
to the persistence length by �= lpkBT. The actual value of the
energy contained in a floppy mode of amplitude �z
 can then
be found by minimizing Wb for a given set of cross-link

positions y
�s
,i�=
! ȳ
,i �taken from Eq. �2��, and gives

W0��z
� = min
y
�s�,y
�s
,i�=ȳ
,i

Wb�y
� . �4�

Technically, this is achieved by performing a cubic spline
interpolation through the set of points ��s
,i , ȳ
,i��i=1,. . .,ncl

.
This can be shown to be equivalent to the minimization of
the bending energy in Eq. �3� �30�. As d3y
 /ds3 is propor-
tional to the transverse force in the fiber, the discontinuities
of the cubic spline in its third derivative reflect the external
transverse force that is needed to keep the fiber in its de-
formed shape.

A. Deformation field

Up to now we have considered the movement of a single
fiber in a static environment, where neighboring polymers
remain fixed to their initial positions. To calculate the elastic
modulus of a network, however, we have to take into account
the fact that there is a different axial displacement �z
 for
each of the 
=1, . . . ,Nf fibers. We thus find �see Fig. 3�c��
that Eq. �2� has to be modified by a term �z
i

/ sin �
,i due to
the additional movement �z
i

of the neighboring filament 
i

at cross-link i. This amounts to the overall deflection

y
,i = ȳ
,i +
�z
i

sin �
,i
ê
,i. �5�

In principle, the modulus can now be found by minimiz-
ing the energy, consisting of contributions of the type of Eq.
�4� from each of the Nf fibers, with respect to the variables
�z
 �44�. Compared to the original problem of having to
minimize the energy with respect to the Ncl�Nfncl cross-link
coordinates, this is only a minimization with respect to
Nf �Ncl variables. Still, this poses a challenging quenched
disorder problem which can only be tackled numerically.

Here we further reduce the problem to an effective single-
fiber theory, by making a simplifying assumption about the
magnitude of the individual �z
. We assume that the fiber
centers-of-mass rc.m.


 = �X
 ,Y
 ,Z
� follow the macroscopic
strain field in an affine way, just as the centers of the hexa-
gons did in the honeycomb lattice. This is equivalent to as-
suming that the displacement field is affine on the scale of
the fiber length lf. Note, however, that this does by no means
imply that the elastic elements themselves undergo affine
deformations, as will become clear below. For a given mac-
roscopic shear 
�
xy we find �rc.m.


 =
Y
êx and thus

�z
 = 
Y
 cos �
, �6�

which is just the projection of the affine displacement on the
fiber axis, oriented at an angle �
� �−� /2 ,� /2� with re-
spect to the x axis. Using Eqs. �6� and �2� one can write Eq.
�5� as

y
,i = − �zrel

 cot �
,iê
,i + ȳ
,i

� , �7�

where we have defined

�zrel

 = 

Y
 cos �
 − Y
i

cos��
,i + �
�
cos �
,i

� . �8�

Upon comparison of Eq. �7� with Eq. �2� one may interpret
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x
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P
(x

)

N
f
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N
f
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N
f
= 225

~ x
-3

FIG. 5. �Color online� Normalized probability distributions of
absolute values of floppy mode displacements, as shown in Fig. 4.
The distributions for different fiber numbers Nf can be rescaled on
a single master curve by changing the overall amplitude of the
modes.

FIG. 4. Floppy mode of a random fiber network with 225 fibers
�see Sec. IV�. A fiber has the length of one third of the system size.
Gray lines represent the network, black lines the floppy mode dis-
placements. Note that the overall amplitude of the mode is arbitrary.
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�zrel

 as specifying the movement of the primary fiber relative

to its surrounding. Note, however, that this relative displace-
ment �zrel


 depends on the orientations �
 and �
+�
,i of the
crossing filaments, as well as on the arc-length along the
primary fiber �via Y
i

�. In contrast to Eq. �2�, which follows
from moving the primary fiber in a fixed environment, Eqs.
�7� and �8� are derived from a joint movement of all fibers.

For the following we are only interested in the typical
magnitude of �zrel


 , which may be obtained by averaging over
the angles �
 and estimating the typical distance between the
center of masses of the intersecting fibers as Y
−Y
i

� lf. We
thus find that �zrel


 	
lf.
By assuming affine displacements of the fiber centers, we

have thus succeeded in reducing the many-body problem of
the movement �z
 of Nf interacting fibers to the case of a
single fiber moving the amount �zrel


 �
lf relative to its sur-
rounding. It should be made clear that this assumption is
different from the usual approach of assigning affine defor-
mations on the scale of the single polymer segment
�9,12,13�. The latter would lead to deformations �aff	
ls,
proportional to the length ls of the segment. Instead, axial
displacements of the fiber as a whole are, by construction of
the floppy mode, directly translated into nonaffine deforma-
tions �na	
lf, which do not depend on the length of the
segment but rather on the scale of the fiber length lf. It is
worth pointing out the subtle difference between “affine dis-
placements” of single points �the fiber centers-of-mass�, and
“affine deformations” of fiber segments of length ls.

B. Self-consistent effective medium theory

The effective single fiber picture developed in the preced-
ing section is particularly well suited to set up an effective
medium approach that includes corrections to the affine as-
sumption embodied in Eq. �6�. For this let us consider the
excitation of a localized floppy mode of magnitude �z


�
lf in a single fiber. The scaling with the fiber length lf
indirectly reflects the affine displacement of all the fiber cen-
ters in the network.

The energy required to move this single fiber against a
static environment is given by Eq. �4�. Most importantly,
however, this fiber energy may be reduced at the cost of
deforming the surrounding, i.e. by spreading the mode to the
neighboring filaments. The amplitudes of the so-generated
secondary floppy modes may be found from solving Eq. �5�
for �z
i

. We thus find

�z
i
= sin �
,i�y
,i − ȳ
,i� · ê
,i �9�

which highlights the fact that a secondary mode of amplitude
�z
i

occurs when the actual transverse deflection y
,i is dif-
ferent from the floppy-mode prescription ȳ
,i. Furthermore,
due to the scalar product with ê
,i, the displacement yi

� per-
pendicular to the plane defined by the two intersecting poly-
mers does not contribute, y
,i

� · ê
,i=0.
With Eq. �9� we find that Eq. �4� has to be modified by the

bending energy contribution W0 from the neighboring fila-
ments giving

W1��z
� = min
y
�s�


Wb�y
� + 

i=1

ncl

W0��z
i
�� . �10�

Unlike in Eq. �4�, where the cross-link variables on the pri-
mary fiber were constrained to be y
�s
,i�= ȳ
,i, here they
remain unconstrained and move such that the total energy,
deriving from both primary and secondary fibers, is mini-
mized. Note, however, that the deflections on the secondary
fibers are still constrained and given by Eq. �2�. This defi-
ciency can be cured by taking into account further levels of
filaments �tertiary, . . .�, thus defining a sequence of energies
�W0 ,W1 ,W2 , . . .W��, the fixed point of which is found by
substituting on both sides of Eq. �10� one and the same
asymptotic function W�.

Since the resulting expression still depends on the
quenched random network structure in a complicated way,
we have recently proposed an effective medium approxima-
tion that uses the averaged ��W����W instead �18�. For rea-
sons that will immediately become apparent we have defined
two averaging procedures. The angular brackets �.� denote
averaging over the random variables on the primary fiber, the
cross-link positions s
,i and angles �
,i. The probability dis-
tributions of these variables provide the most important char-
acterization of the architecture of the network. The brackets
�.� denote averaging with respect to the remaining random-
ness in the subsequent hierarchies of fibers. Mathematically,
the effective medium approximation is implemented by in-
terchanging this latter average with the minimization opera-
tion. Physically, this amounts to assuming that one and the
same medium �W� is felt by all the cross-links on the primary
fiber. One thus arrives at the final equation

W��z
� =�min
y
�z�


Wb�y
� + 

i=1

ncl

W��z
i
��� , �11�

where �z
i
is given by Eq. �9�. In principle Eq. �11� has to be

solved self-consistently for the function W�x�. Since we are
concerned with small displacements only the energy may be
expanded to harmonic order as W�x�=kx2 /2, which gives

W��z
i
� =

1

2
k sin2�
,i�y
,i − ȳ
,i�2, �12�

where we defined y
,i=y
,i · ê
,i and similar for ȳ
,i. With this
parametrization Eq. �11� has to be solved for the single un-
known parameter k.

Equation �11� can be interpreted as follows. The energy
associated with the excitation of a single floppy mode of
amplitude �z has two contributions. The first term, corre-
sponding to the bending energy of the primary filament, Wb,
dominates if the cross-links follow the floppy-mode prescrip-
tion and �z
i

�0 �y
,i� ȳ
,i�. On the other hand, the energy is
mainly stored in the surrounding medium if the cross-links
deviate strongly from the floppy mode, y
,i�0, in which
case the bending energy vanishes, Wb�0. Since medium de-
formations can only occur in the form of floppy modes, the
stiffness k of the medium is the same as the stiffness of the
fiber. This allows to solve the equation self-consistently,
which can easily be done numerically as will be explained in
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the appendix. There, we will also solve Eq. �11� for some
exemplary network structures. Note that the elastic modulus
G of the entire network can easily be obtained from the
single-fiber energy W by equating G
2�NfW.

It is worth mentioning that Eqs. �11� and �12� may be
interpreted as the zero temperature limit �or the saddle-point
approximation� to a fluctuating stiff polymer in a random
array of harmonic pinning sites with stiffnesses given by
k sin2�
,i �see Fig. 6�. Compared to the “bare floppion” de-
fined by Eqs. �2�–�4�, the excitation given by Eq. �11� is
“dressed” and incorporates the interactions with the medium
on a Cayley-tree level.

IV. RANDOM NETWORK IN 2D

Having presented the general concepts we now proceed to
introduce a simple model system where the ideas may be
tested. The random two-dimensional network, the “Mikado
model,” has the advantage that it only needs one structural
parameter, the density of fibers �.

The network is defined by randomly placing N elastic
fibers of length lf on a plane of area A=L2 such that both
position and orientation are uniformly distributed �31–33�.
The fiber-fiber intersections are assumed to be perfectly
rigid, but freely rotatable cross-links that do not allow for
relative sliding of the filaments. The randomness entails a
distribution of angles �� �0,�� between two intersecting
filaments

P��� =
sin �

2
, �13�

while distances between neighboring intersections, the seg-
ment lengths ls, follow an exponential distribution �34�

P�ls� = �ls�−1e−ls/�ls�. �14�

The mean segment length �ls� is inversely related to the line
density �=Nlf /A as �ls�=� /2�. The segments are modeled
as classical beams with cross-section radius r and bending
rigidity �. Loaded along their axis �“stretching”� such slen-
der rods have a rather high stiffness k��ls�=4� / lsr

2, while

they are much softer with respect to transverse deformations
k��ls�=3� / ls

3 �“bending”�.
Numerical simulations �15–17� for the effective shear

modulus G of this network have identified a crossover scal-
ing scenario characterized by a length scale

� = lf���lf�−� �15�

with ��2.84 �16,45� that mediates the transition between
two drastically different elastic regimes. For fiber radius
r�� the system is in an affine regime where the elastic
response is mainly dominated by stretching deformations ho-
mogeneously distributed throughout the sample. The modu-
lus in this regime is simply proportional to the typical
stretching stiffness, Gaff	k���ls�� and independent of the fiber
length lf. This is in marked contrast to the second regime at
r��. There, only non-affine bending deformations are ex-
cited and the modulus shows a strong dependence on fiber
length,

Gna 	 k���ls��
 lf

�ls�
��−3

, �16�

and thus on density, Gna	��� where �=2�+1�6.67.
As this latter non-affine regime is characterized by a ratio

k���ls�� /k���ls�����ls� /r�2�1, and therefore a bending
mode that is soft as compared to the stretching mode, we
may apply the floppy-mode picture developed in previous
sections to calculate the exponent �. To this end, we numeri-
cally solve Eq. �11� for varying numbers ncl��lf of cross-
links per fiber. The average �.� is thereby defined in terms of
the probability distributions of Eqs. �13� and �14�. As a re-
sult, we find the fiber energy W to depend on density � as
W��x and x�5.75±0.1 �see Fig. 7�. The shear modulus can
be inferred from W as G���lf�W��6.75, which reproduces
the exponent � as measured in the simulation to a remark-
able accuracy.

FIG. 6. �Color online� The energy in Eq. �11� is that of a stiff
polymer attached to springs of variable stiffness. It may therefore be
interpreted as a polymer in a random potential. The potential is
attractive and localized at pinning sites given by Eq. �2�.
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FIG. 7. �Color online� Solution of Eqs. �11� and �12� for various
numbers ncl of cross-links per filament. The randomness is defined
by Eqs. �13� and �14�. The different symbols at given ncl relate to
ensembles of varying size N=100. . .1000. The lines W�ncl

5 and
W�ncl

6 serve to illustrate the quality of the fit.
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Based on the formalism of the preceding sections we have
also developed �18� a scaling argument that allows approxi-
mate solution of Eq. �11� in terms of a single length-scale
lmin, which on a microscopic scale governs the coupling of
the fiber to the matrix. Since the stiffness k��� / ls

3 of the
individual polymer segment is strongly increasing with de-
creasing its length ls, we assume that segments with ls
� lmin rather deform the surrounding medium than being de-
formed itself, while longer segments ls� lmin are not stiff
enough to deform the medium. The scale lmin therefore plays
the role of a minimal length below which segments are stiff
enough to remain undeformed.

In terms of the cross-link deflections yi, this implies that
long �and soft� segments have yi� ȳi, while short �and stiff�
segments have cross-links that are in their original position
yi�0. Since the energy of a segment of length ls can be
written as w�ls��k�yi

2��yi
2 / ls

3, we find that the elastic en-
ergy is reduced by the amount w�lmin���ȳi

2 / lmin
3 as com-

pared to the situation where also the short segments are de-
formed. In turn, the energy in the neighboring fiber is
increased, where a floppy mode of amplitude �z� ȳi is ex-
cited. The length scale lmin can therefore be determined by
equating the energy reduction in the small segments, w�lmin�,
with the energy increase due to the additional floppy mode in
the neighboring fiber. This latter contribution can be calcu-
lated as an average over all segments of length ls� lmin thus
giving

W � ncl	
lmin

�

dlsP�ls�w�ls�=
! w�lmin� . �17�

As a result, we find lmin�1/�2lf and thus for the average
fiber energy W����lf�6 / lf. This corresponds to an exponent
�=7, which confirms the previous analysis.

From Eq. �14� one may also induce a probabilistic inter-
pretation of the length-scale lmin. Segments with lengths ls
� lmin will occur on average only once along a given fiber.
This may be seen from solving the equation

	
0

lmin

dlsP�ls� �
1

ncl
, �18�

stating that small segments will occur once in every ncl
��lf cross-links. There will, therefore, typically be one seg-
ment per fiber in the undeformed configuration yi�0, while
all others follow the floppy mode.

One may actually use these results to relate the length-
scale � found in the simulation to lmin by �� lf�lmin/ lf�3/2. We
therefore propose that the scaling variable x=r /� of Eq. �2�
in �16� is written in the alternative form x−2

�k��lf� /k��lmin� reflecting the more fundamental nature of
the length scale lmin. Written in this way x−2 directly encodes
the relative stiffness of the deformation modes stretching and
bending on the scale of the whole polymer fiber. The modu-
lus then takes the scaling form

G�r,�� = ��g�k��lf�/k��lmin�� , �19�

which is the equivalent of Eq. �2� in �16�.

The only requirement for the presence of a bending domi-
nated regime �beyond the scale separation k� /k��1� is a
low coordination number, which for the random fiber net-
work can be calculated as z=4�1− ��lf�−1�. This places the
network below the rigidity transition for any finite lf, while
increasing the filament length lf →� the critical coordination
of zc=4 is asymptotically reached. As an implication the
bending mode must eventually be suppressed.

The above analysis clearly shows that the proposed floppy
mode concept can be utilized to understand the bending
dominated elasticity in the random fibrous network. In addi-
tion, it allows to extract the length scale lmin that is ultimately
responsible for the strong density dependence of the elastic
modulus. It is important to note that other network structures
in general will not necessarily feature the same length scale
lmin, even though the basic formalism of the floppy bending
modes can still be applied. The exponents characterizing the
elastic response will thus depend on network architecture, as
is exemplified in the Appendix.

In Ref. �27� we have furthermore applied the theory to
explain the mechanics of reconstituted actin networks, where
filaments are cross-linked and bundled by fascin. By taking
into account the fact that bundles have to be characterized by
a length-dependent bending rigidity ��L� �35–37� it was pos-
sible to explain the observed dependence of the elastic
modulus on actin and fascin concentration.

A. Nonlinear elasticity arising from geometric effects

Here, we report on additional simulations probing the
nonlinear modulus of the structure. Note that in these simu-
lations the material properties of the fibers remain linear,
such that the nonlinearities result from geometrical effects
only. As one can see from Fig. 8, the network is strongly
stiffening already at very small values of strain.

Similar results have recently been reported in �38�, where
the stiffening behavior was attributed to a crossover from
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FIG. 8. �Color online� Nonlinear “modulus” � /
 in the bending
dominated regime ��lf =30� for various values of the aspect ratio

=r / lf. Inset: The stress increases linearly up to a strain of about
1%. Normal stresses quickly rise in magnitude and eventually are of
the same order and proportional to the shear stress.
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bending to stretching dominated elasticity. The floppy mode
picture allows to give this cross over a microscopic explana-
tion. As argued in Sec. II B, the floppy modes of the fibrous
network are only adequate for infinitesimally small displace-
ments �z. The construction embodied in Eq. �2� keeps seg-
ment lengths invariant to first order in �z only, such that any
finite deformation will necessarily lead to stretching of the
bonds.

Note that this stiffening mechanism is not mediated by
non linear material properties of the fibers but rather is of
geometric origin and is due to the specific structural arrange-
ment in the fibrous architecture. It is therefore of different
nature than the stiffening mechanism inherent to single semi-
flexible polymers, where an applied tension can stretch the
polymer only as far as there is stored length available �39�.

In the nonlinear regime we have also measured the nor-
mal stresses �xx and �yy that act perpendicular to the princi-
pal strain direction. We found �see inset to Fig. 8� that these
stresses can become of the order of the shear stresses �xy and
have a negative sign indicating that the network pulls in
during the course of the deformation. A similar effect has
recently been observed in rheological measurements on
F-actin networks �40� and rationalized in terms of the highly
nonlinear entropic stretching response of single polymers.
Note that in our simulations the same effect occurs within a
purely mechanical picture, where no material non linearities
are present. It is explained with the fact that the additional
amount of contour length necessary to undergo a finite
floppy mode can only come from pulling in the fiber ends.
This is equivalent to a network contraction which leads to
the observed large normal stresses.

B. Nonstraight fibers

In real networks fibers will never be perfectly straight. We
have argued above that in this case the scale of the fiber
length lf must be viewed as the length scale over which the
polymer remains straight. With this in mind our theory also
holds for networks where fibers are nonstraight, as long as
the undulation wavelength �� lf is larger than the distance

between cross-links l̄s.
In this section we investigate the effects of introducing

undulations with wavelengths comparable to the cross-link
distance, ���ls�. To this end we have manually generated
zig-zag fibers by randomly displacing the cross-links by
some maximal amount � · lf. A similar analysis has been per-
formed in Ref. �38�, where a substantial decrease in the de-
gree of nonaffinity of the deformation field has been found.
Similarly, we find that the system develops a new crossover
to a regime of affine bending deformations �see Fig. 9�,
where the modulus scales as G	��3, a behavior well known
from bending dominated cellular foams �11,14,41�.

In this new regime the bending deformations come from
pulling out the zig-zags similar to the pulling of thermally
activated polymer undulations. We find that the curves may
be scaled by using the same length scale lmin���−2 that
served as a lower cutoff in segment lengths. The modulus
thus takes the following scaling form

G��,��� = �−�/2g��/lmin� , �20�

where the scaling function has the limiting form g�x�1�
�x�/2 to eliminate the � dependency. For large values of the
scaling variable x�1 we have to recover the scaling prop-
erties characteristic for foams, giving g�x�1��x3/2. This
analysis highlights once more the fundamental role played
by the length scale lmin in establishing the elastic response of
the network. Here, it acts as a crossover scale, that mediates
the transition to a foamlike bending regime at strong disorder
�� lmin.

Note that, by introducing kinks in the contour of the fi-
bers, the floppy modes start to spread beyond the single fiber
to which they were confined originally. A kink is most con-
veniently characterized by the angle � through which the
direction of the fiber changes at the location of the kink. By
displacing a cross-link by the amount � one thus finds for the
angle sin �=� / ls, where ls is the length of the segment that
ends at the cross-link. Exciting the fiber with a floppy mode
of amplitude �z, a finite kink-angle � leads to the fraction
�z���z sin ���z� / ls being coupled into the neighboring
fiber. At the crossover, defined by x=� / lmin�1, we therefore
find that for a segment of length ls= lmin, �z��lmin���z. In
this situation the floppy mode is transmitted to the neighbor-
ing fiber without attenuation of its amplitude. Since segments
of length lmin statistically occur once per filament, the cross-
over point also marks the onset of a complete delocalization
of the floppy modes.

V. CONCLUSION

We started our discussion with the assumption that the
elasticity of stiff polymer networks is governed by the action
of the bending mode. This assumption is based on the rec-
ognition that in systems where the persistence length is large,
bending as compared to stretching is by far the softer mode.
The respective spring constants are scale-separated and obey
the relation k� /k�� lp / l�1.
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FIG. 9. �Color online� Shear modulus G �inset� and scaling
function g of Eq. �20� for various values of �. Collapse is achieved
by plotting G��/2 as a function x=���1/2 and known exponent �
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One immediate implication of this scenario is that poly-
mer end-to-end distances have to stay constant, which neces-
sitates deformations that are highly non-affine. We have
characterized this non-affine deformation field by construct-
ing the floppy modes of the structure �18�. These are defined
as the set of cross-link displacements that do not lead to any
stretching of bonds. With this microscopic deformation field
it is possible to calculate the macroscopic elastic moduli on
the level of a self-consistent effective medium theory that
incorporates fiber-medium interactions within a Cayley-tree
approximation.

As a result the anomalous scaling properties of the linear
shear modulus as determined by computer simulations of
two-dimensional random networks �16,17� are explained.
The exponents are found to be a consequence of the special
architecture of the network that features two different length
scales. On the mesoscopic scale the fiber length lf induces a
non-affine deformation field, with segment deformations �na
following the macroscopic strain 
 as �na�
lf, instead of as
�aff�
ls, which would result from an affine deformation
field. Microscopically, a second length lmin plays the role of a
minimal length below which segments are stiff enough to
remain undeformed.

We would like to emphasize that the construction of the
floppy modes only relies on the presence of the mesoscopic
length lf, which is applicable to a broad class of networks. In
the particular case of a random rod network we have found
that the anomalous scaling properties of the shear modulus,
previously found in the simulations, crucially depend on the
presence of a second length scale lmin, which is a special
property of this random architecture. The exponents found
for random rod networks are therefore not immediately ap-
plicable to other systems. Having established the general the-
oretical framework, it is nevertheless straightforward to cal-
culate the exponents for other types of networks in two and
three dimensions. Indeed, we have applied the theory to re-
constituted actin networks cross-linked and bundled with fas-

cin, and found that the calculated exponents are in good
agreement with the experimental results �27�.

Finally, we also conducted simulations probing the non-
linear elasticity of the random fibrous network as well as
modified the network structure by introducing kinks in the
contour of the polymers. The results confirm the governing
role of the identified length scales and firmly establish that
the nonaffine floppy mode picture captures the essential
physics of stiff polymer networks similar in spirit to affine
rubber elasticity for flexible polymer gels.

In view of this conceptual analogy, the next step could be
to assess the importance of cross-link fluctuations, which
have been neglected here �as in classical rubber elasticity�.
By greatly reducing the number of fluctuating degrees of
freedom to one per fiber �namely �z�, the theory developed
here may very well provide a new starting point for the
analysis of the statistical mechanics of stiff polymer net-
works.
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APPENDIX: SOLUTION OF EQ. (11) FOR VARIOUS
NETWORK STRUCTURES

In this Appendix, we provide some technical details on
how to solve Eq. �11� for various network architectures in
two spatial dimensions. Assuming harmonic energies W�x�
=kx2 /2 we rewrite Eq. �11� symbolically as

k = �f�k,ncl;�zi,�i��� , �A1�

where the function f is defined by

f = min
y�z�
�2Wb

�z2 + k

i=1

ncl

sin2��i�
 y�zi�
�z

+ cot �i�2� , �A2�

and we used Eq. �2� to substitute ȳi=−cot �i�z.
The network structure enters Eqs. �A1� and �A2� via the

variables �zi ,�i�, which relate to the locations zi of the
crosslinks on the backbone of the primary fiber as well as the
angles �i between primary and secondary fibers. The en-
semble average �.� can then be defined by the probability
distributions P���i�� and P��li��, where segment lengths are
given by li=zi+1−zi.

To illustrate the importance of structural features on the
elastic properties of the network we solve Eq. �A2� for two
types of distributions, relating to random and regular struc-
tures, respectively. The random network is characterized by
probability distributions as given in Eqs. �13� and �14�. The
regular network has only one segment length l0= lf / �ncl−1�
and an angular distribution similar to Eq. �13� but restricted
to the interval ��min,�−�min�.

For a given realization of the randomness the function f is
calculated by performing the minimization with respect to
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chitectures. �f�k�� is plotted as a function of k for ensembles of
varying sizes. The solution to Eq. �A2� is found by intersecting a
solid curve with the dashed �bisecting� line.
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the contour y�z�. This is achieved in two steps, where first
the bending energy Wb�y� is minimized for a given set of
values �y�zi��. As explained in the main text, this is equiva-
lent to a cubic spline interpolation. The second step consists
of a minimization with respect to the remaining variables
�y�zi��.

Finally solving Eq. �A1� the fiber stiffness k��ncl� is de-
termined as a function of the number ncl of cross-links per
fiber. A graphical solution for ncl=40 for various network
structures is presented in Fig. 10. The function �f�k�� is plot-
ted as a function of k. The sought after value k� is found at
the point of intersection with the bisecting curve.

The different curves for a given network structure corre-
spond to ensembles of varying size. They seem to diverge in
the limit k→�. In fact, in this limit only the bending energy
Wb contributes to Eq. �A2� and yi� ȳi. This may make the

averaging procedure ill-defined, for example in the case of
Eq. �14� where the segment lengths ls can become arbitrarily
small. The resulting segmental bending energy wb� ls

−3

shows a divergence and does not have a well defined average
value.

As one can see from Fig. 10 the resulting fiber stiffness k�

very sensitively depends on the randomness in the segment
lengths, while cross-link angles only play a minor role. This
is made particularly clear by comparing the random-segment
and the regular-segment network in terms of the exponent x,
which is defined by k��ncl

x . As stated in the main text the
random network has x�6, while for the regular network we
find x�4. We have shown above that the former result de-
rives from the presence of the length scale lmin. In contrast,
the latter is simply obtained by calculating the bending en-
ergy of ncl segments each of length l0, Wb�ncl� / l0

3�ncl
4 .
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